Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Minerals ; 13(4):505, 2023.
Article in English | ProQuest Central | ID: covidwho-2294950

ABSTRACT

Stoneware is a ceramic material with low porosity and high mechanical properties, such as the modulus of rupture. It is essentially made of clay, feldspar and quartz and is sintered to create a mixture of glass and crystalline phases. With the projected growth rate of the global ceramics market size and the country's development plan for 2023–2028, it is imperative that alternative raw materials for the manufacture of ceramic products be sourced so that the importation of these materials, such as feldspar, be minimized, if not eliminated. Cinder in the Philippines is mainly used as a filling material in pavements and residential areas. In this study, this resource is utilized as partial and full replacement of feldspar in a typical ternary diagram for stoneware production. Bars were formed from different formulations by the slip casting method and were sintered at 1200 °C. Physical and mechanical properties of the bars, such as shrinkage, loss on ignition, water absorption, apparent porosity and modulus of rupture were determined. Thermo-physical analyses were also carried out on the raw materials and on formulated powders. Meeting the requirements of the various quality standards for ceramics, the partial replacement of feldspar with black cinder (LF, LFBQ and LFBH) is feasible for wall and roof applications while full replacement of feldspar with black cinder (LB) is suitable for wider use as wall, floor, vitrified, industrial and roof tiles.

2.
Minerals ; 12(3):349, 2022.
Article in English | ProQuest Central | ID: covidwho-1760781

ABSTRACT

Carbon capture is among the most sustainable strategies to limit carbon dioxide emissions, which account for a large share of human impact on climate change and ecosystem destruction. This growing threat calls for novel solutions to reduce emissions on an industrial level. Carbon capture by amorphous solids is among the most reasonable options as it requires less energy when compared to other techniques and has comparatively lower development and maintenance costs. In this respect, the method of carbon dioxide adsorption by solids can be used in the long-term and on an industrial scale. Furthermore, certain sorbents are reusable, which makes their use for carbon capture economically justified and acquisition of natural resources full and sustainable. Clay minerals, which are a universally available and versatile material, are amidst such sorbents. These materials are capable of interlayer and surface adsorption of carbon dioxide. In addition, their modification allows to improve carbon dioxide adsorption capabilities even more. The aim of the review is to discuss the prospective of the most widely available clay minerals in the Baltic States for large-scale carbon dioxide emission reduction and to suggest suitable approaches for clay modification to improve carbon dioxide adsorption capacity.

SELECTION OF CITATIONS
SEARCH DETAIL